Journey 2050 takes students on a virtual simulation that explores world food sustainability and answers the question, "How will we sustainably feed nearly 10 billion people by the year 2050?" The lesson plans and online simulation program allows students to make decisions on a virtual farm and witness their impact on society, the environment and the economy at a local and global scale. The lessons engage students with the important concepts regarding sustainable agriculture. The online simulation contextualizes these concepts as students experience the lives of real farm families throughout the world. As students interact with each family, they learn the role of best management practices in feeding the world, reducing environmental impacts, and improving social performance through greater access to education, medical care and community infrastructure. These lessons can be taught individually or as an entire unit. See the links below for the remaining lessons: 
Technology Used in Agriculture
Life on the farm 100 years ago looked vastly different compared to today, and it will continue to change to meet the needs of the world. Cutting-edge technology and innovations are being used in agriculture. These new technologies are being developed with a purpose to overcome the challenges we face in providing food, fuel, and fiber for a growing population.
The use of technology can be found in nearly every aspect of our daily lives and has revolutionized farming with more innovation on the horizon! Some technologies are emerging while others have been adopted globally.
Here are a few examples. Have you seen any of these innovations in action?
- Autonomous robots: Agriculture requires a significant amount of manual labor. What do you think a robot can do on a farm? Autonomous pickers identify and pick ripe fruits and vegetables. Other specialized robots find and eliminate weeds and pests that damage crops.
- Agriculture sensors: Precise timing is key! When it comes to nutrient management, watering, pest management, and harvest, too early or too late doesn’t cut it. High-tech sensors located in fields send alerts to farmers through an app on their phone when it’s time to take action.
- Aerial crop imaging: Arable land suitable to produce our food is a limited resource. Aerial images taken with drones, satellites, and planes can help farmers map their fields and use the land to its greatest potential. Drones can perform crop monitoring, planting, and even spraying tasks.
- Agriculture data systems: Record keeping and data collection helps farmers identify successful solutions and areas that need improvement. Notebooks are being replaced with digital platforms. Farm data, such as annual crop yield, market forecasts, soil nutrients and weather, are collected and stored electronically to give farmers valuable information as they make decisions.
- Global Positioning Systems (GPS): GPS-based applications are being used for farm planning, field mapping, and more! The farmer is always present, but one of the most popular features of GPS is that the tractor can drive itself to ensure perfect rows and the farmer can program precise applications of seeds and fertilizer.
- Vertical and indoor farming: Growing crops up, instead of out! Now that’s a good idea! Vegetables and fruits tend to work best in vertical farming, but who knows what the future will hold? Vertical farming is ideal where land isn't available and it can even be used as a way to repurpose abandoned structures.
- Livestock health and activity monitors: The livestock industry utilizes technology in a variety of ways to ensure animal health, safety, and welfare. For example, “smart collars” are used like a personal fit bit, tracking daily activity, behavior, and health. Breath analysis can be achieved with high-tech equipment allowing farmers to evaluate potential health problems and diet. Thermal imaging and 3D cameras have the capability of analyzing an animal’s body muscle and weight to advise farmers when to sell their livestock.
- Fish farms and aquaponics: Specialized fish farms involve raising fish in tanks or enclosed ponds. Aquaponic systems are a unique way to grow fish and plants symbiotically. By using a zero-waste system, waste from the fish is cycled through the system serving as a source of nutrients to grow the plants.
- Insect protein: Meat, milk, and eggs are common sources of protein in our diet. But, what about bugs as a source of protein? Insects are affordable and require fewer natural resources. Known as entomophagy, the eggs, larvae, pupae, and adults of certain insects are eaten as part of a meal.
- Cultured meats: Another alternative protein source is cultured meat. It isn’t “meat” in the traditional sense as it doesn’t come from processing an animal. It is formed in a lab using animal cells. Cultured meat uses techniques to engineer tissues to form a meat alternative.
- New seed varieties: Genetically modified organisms (GMOs) and CRISPR technologies edit genes in plants to overcome a challenge, such as a disease. A lot of time and money is required to produce a GMO plant. It takes approximately 13 years to research and ensure its safety and can cost around $136 million dollars.
Can Technology Help Us Sustainably Feed 10 Billion People?
After looking at these emerging technologies, it’s easy to see that farms of the future may look very different than they do today. Will these technologies and more answer the question, "How will we sustainably feed nearly 10 billion people by the year 2050?" Surely it will make a difference, but each innovation must be understood for the benefits and limitations it brings. There is no one-size fits all agricultural solution to address the different needs of a growing population.
Consider robotics. Many fruit and vegetable crops are still highly dependent upon manual labor. Technologies such as robotic crop harvesting machines could decrease the demand and production cost for human laborers. However, even the most sophisticated technology may not compare to the efficiency and precision of human laborers to harvest fruits and vegetables at the precise size and maturity and in a way that does not bruise or damage the produce. The road ahead includes significant amounts of research and financial investment to engineer robots to work on large-scale farming operations. Some robots will need to work on thousands of acres in varying terrains and with varying crops. Others may be needed to perform delicate and timely harvesting.
What about vertical farms? They seem like an easy solution to save land, but are they a solution for all crops? Microgreens, like herbs and vegetables such as lettuce, seem to have the most success and may be grown with less water and crop inputs; however, the high energy cost to provide artificial lighting and adequate growing temperatures for the plants must be decreased for vertical farming to be economical. Not all crops can be grown with the methods used in vertical buildings.
Innovative technologies will be part of the solution to meet the needs of a growing population, but there are complex structural and environmental challenges that will need to be addressed. What technologies can be implemented in developing nations to secure a more sustainable food supply? How do consumer food choices impact the sustainability of our food supply? How can we use the United Nations Sustainable Development Goals to alleviate sudden disruptions in the food supply and famine? Most importantly, what can each of us do to be part of the solution today?
We have a lot of challenging problems that require critical thinking and creative solutions to sustainably increase our food supply for a growing population. New solutions are being researched and tested each day to solve this global challenge.
What ideas do you have to help feed the world?